Fundamentals of Flight Vehicle Control

AEROENG 3521

Description / Conditions

Transcript Abbreviation:
Fnd Flt Veh Cntl

Course Description:
Linear dynamic systems analysis using Transfer function (Laplace Transformation based) methods and State Space (matrix theory based) methods with emphasis on aircraft and spacecraft models.

Course Levels:
Undergraduate (1000-5000 level)

Designation:
Required

General Education Course:
(N/A)

Cross-Listings:
(N/A)

Course Detail

Credit Hours (Minimum if “Range” selected):
3.00

Max Credit Hours:
(N/A)

Select if Repeatable:
Off
Maximum Repeatable Credits:
(N/A)

Total Completions Allowed:
(N/A)

Allow Multiple Enrollments in Term:
No

Course Length:
14 weeks (autumn or spring)
12 weeks (summer only)

Off Campus:
Never

Campus Location:
Columbus

Instruction Modes:
In Person (75-100% campus; 0-24% online)

Prerequisites and Co-requisites:
Prereq: 3520, and enrollment as AeroEng-BS student (No pre-majors can enroll in this class).

Electronically Enforced:
No

Exclusions:
(N/A)

Course Goals and Learning Objectives

Course Goals / Objectives:
Understanding and appreciation of common features of linear time-invariant (LTI) systems encountered in various engineering disciplines
Obtain the responses of LTI systems and quantify their performances both within open-loop and closed-loop environments
Cast various mechanical, aerospace, electrical and electro-mechanical systems into forms amenable to the methods they learn in this course
Identification of characteristic parameters of LTI's from the studies of experimental/test responses

Check if concurrence sought:
No
Contact Hours
Contact Hours:

<table>
<thead>
<tr>
<th>Topic</th>
<th>LEC</th>
<th>REC out-of-class</th>
<th>REC in-class</th>
<th>Weekly LAB out-of-class</th>
<th>Weekly LAB in-class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of dynamic systems</td>
<td>3.0</td>
<td>3.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Review of solution of differential equations by the Laplace transform methods</td>
<td>6.0</td>
<td>6.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Block-Diagram Algebra</td>
<td>3.0</td>
<td>3.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>First -order Linear (LTI) systems Vehicle Simulations : Aircraft lateral and longitudinal dynamics simulations via transfer functions and MATLAB; Spacecraft attitude and rendezvous dynamics simulations via transfer functions and MATLAB</td>
<td>6.0</td>
<td>6.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>(LTI) Frequency-domain (Frequency Response) specifications. Connection between time domain and frequency domain, specifications and Bode plots. MATLAB Utility functions; Stability of LTI systems – Routh-Hurwitz criterion; Root Locus Technique</td>
<td>6.0</td>
<td>6.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Multivariable (LTI) systems - State space (Time-domain) representation: The connection between state space and transfer function viewpoints, State-space Transition and Response by simulation; MATLAB Utility functions;</td>
<td>3.0</td>
<td>3.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Vehicle Simulations : Aircraft lateral and longitudinal dynamics simulations via state-space and MATLAB; Spacecraft attitude and rendezvous dynamics simulations via state-space and MATLAB</td>
<td>6.0</td>
<td>6.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Introduction to Digital systems: discrete difference equations, z-transform, sample and hold discrete sytems; block diagramming and open and closed-loop transfer functions, z-transform inversion, frequency domain in the z-plane.</td>
<td>6.0</td>
<td>6.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Topic</td>
<td>LEC</td>
<td>REC out-of-class</td>
<td>REC in-class</td>
<td>Weekly LAB out-of-class</td>
<td>Weekly LAB in-class</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Response to random inputs: Mean, variance, RMS, Fourier transform,</td>
<td>3.0</td>
<td>3.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>mean square response to random inputs, gust and launch responses,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATLAB utility functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Grading and Texts

Grading Plan:
Letter Grade

Course Components:
Lecture
Recitation

Grade Roster Component:
Lecture

Credit by Exam (EM):
No

Grades Breakdown:

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm exams (2)</td>
<td>50%</td>
</tr>
<tr>
<td>Final exam</td>
<td>30%</td>
</tr>
</tbody>
</table>
Representative Textbooks and Other Course Materials:

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Textbooks and Other Course Materials Entered.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABET Student Learning Outcomes

ABET-CAC Criterion 3 Outcomes:
(N/A)

ABET-ETAC Criterion 3 Outcomes:
(N/A)

ABET-EAC Criterion 3 Outcomes:

Substantial contribution (3-6 hours)	1	an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
Some contribution (1-2 hours)	2	an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
Some contribution (1-2 hours)	4	an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
Some contribution (1-2 hours)	6	an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
Some contribution (1-2 hours)	7	an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Embedded Literacies (UG courses only)

Embedded Literacies Info:

Attachments / Additional Notes or Comments

Attachments:
(N/A)
Additional Notes or Comments:
(N/A)