

# **Internal Combustion Engine Modeling**

## **MECHENG 7440**

### **Credit Hours:**

3.00 - 3.00

#### **Course Levels:**

Graduate (5000-8000 level)

#### **Course Components:**

Lecture

## **Course Description:**

Comprehensive coverage of spark-ignited internal combustion engines modeling (fluid dynamics, thermodynamics and combustion). Additional coverage of compression ignition engine modeling and boosting.

#### **Prerequisites and Co-requisites:**

Prereq: 5530 or 630 or equiv, or permission of instructor.

#### **Course Goals / Objectives:**

- To review fundamental principles of internal combustion engines with the perspective of modeling
- To develop crank-angle resolved mathematical models of the dynamics of mechanical engine components and friction
- To develop crank-angle resolved mathematical models of in-cylinder processes in spark ignited engines, including heat release, heat transfer, and emissions
- To develop crank-angle resolved mathematical models of breathing processes in internal combustion, spark ignited engines
- To model 1-D compressible flow in engines using commercial software
- To develop mathematical models of boosting technology for internal combustion engines
- To analyze case-studies of where engine modeling is applied in industry

## **Course Topics:**

- Crank kinematics, dynamics and engine friction
- Crank kinematics, dynamics and engine friction
- In-cylinder heat release
- Combustion stoichiometry and chemical equilibrium
- In-cylinder heat transfer
- Heat release modeling single zone
- Heat release modeling multi zone
- Emissions modeling
- Basic air modeling components static elements
- Wave dynamics
- Basic air modeling components dynamic elements
- Basic air modeling components dynamic elements
- Basics of aftertreatment systems
- Turbocharging the ICE
- Overview of diesel engine modeling

## **Designation:**

Elective