

Design and Manufacturing of Compliant Mechanisms and Robots

MECHENG 5751

Credit Hours:

3.00

Course Levels:

Undergraduate (1000-5000 level) Graduate (5000-8000 level)

Course Components: Lecture

Course Description:

Introduces methods and theories for kinematic and force analysis, synthesis of rigid body and compliant (flexible) mechanisms and robots. Pseudo-rigid-body model and CAD/CAE software will be used for modeling and analysis study. Students will be required to work on a team project to solve a real world design problem related to mechanisms and robots.

Prerequisites and Co-requisites:

Prereq: 3670 or equiv, or Grad standing in Engineering, or permission of instructor.

Course Goals / Objectives:

- Ability to perfrom position, velocity and static force analysis of rigid body mechanisms and robots
- Ability to perform algebraic synthesis of rigid body mechanisms
- Ability to develop pseudo-rigid-body models of compliant mechanisms
- Ability to understand force-deflection relationships of rigid body and compliant mechanism
- Ability to perform kinematic and static force analysis of compliant mechanisms using energy and principle of virtual work
- Ability to use computer-aided engineering software to model and evaluate rigid body and compliant mechanisms

Course Topics:

- Planar kinematics, vector/matrix algebra, complex number approach
- Positional analysis of planar linkages and robots
- Range of motion of planar linkages
- Velocity and force analysis of linkages and robots
- Algebraic synthesis of rigid body linkages
- Computer-aided design of mechanisms and robots Machine dynamics simulation
- Flexibility, deflection, material properties
- Elastic analysis of cantilever 2D beams
- Pseudo-rigid-body model
- Force-deflection relationships, principle of virtual work
- Special purpose mechanisms: constant-force mechanisms, bistable mechanisms
- Design optimization of compliant mechanisms
- Manufacturing methods and lab: 3d printer, CNC mill, SDM, mold design, plastic and soft parts
- Project fabrication
- CAD and CAE modeling

Designation:

Elective