

Colloidal and Interfacial Processes in Aquatic Systems

ENVENG 7220

Credit Hours:

3.00 - 3.00

Course Levels: Graduate

Course Components:

Lecture

Course Description:

Fundamental concepts of the chemistry of the solid-water interface, adsorption/desorption, coagulation, and deposition in natural and engineered systems.

Prerequisites and Co-requisites:

Prereq: 2100 (610), or Grad standing, or permission of instructor.

Course Goals / Objectives:

- Develop an understanding of the chemistry of environmentally relevant surfaces
- Be able to apply mass action models to predict the surface chemistry of environmentally relevant surfaces
- Apply understanding of the chemistry of environmental surfaces to predict the fate and transport of particles and pollutants in natural systems

Course Topics:

- Overview, objectives & background The physical nature of interfaces Basics of soil mineralogy Site binding
- Origins of surface charge at mineral surfaces Site enumeration Chemistry of hydrous oxide surfaces Surface charge and the electric double layer
- Electrical Double Layer- Model Depictions Coordinative reactions at hydrous oxide surfaces Protolysis and electrolyte binding
- Coordinative reactions at hydrous oxide surfaces Cation and anion ion adsorption Spectroscopic Detection of Surface Species
- Surface complexation modeling
- Chemistry of natural organic matter (NOM) Metal binding to NOM
- NOM binding to mineral interfaces Simulating interactions with NOM
- Colloidal Hydrodynamics and transport
- Coagulation rate theories
- Collision mechanisms
- DLVO theory and particle stability
- Steric stabilization Bridging flocculation
- Particle deposition in porous media Colloid-facilitated transport
- Student presentations

Designation:

Elective