

# **Introduction to Computational Aerodynamics**

# **AEROENG 5615**

## **Credit Hours:**

3.00

## **Course Levels:**

Undergraduate (1000-5000 level) Graduate (5000-8000 level)

## **Course Components:**

Lecture

## **Course Description:**

Introduction to computational methods used in aerodynamics flow problems.

## **Prerequisites and Co-requisites:**

Prereq: 3570 and 3581, and AeroEng major; or Grad standing in Mechanical or Aerospace Engineering; or permission of instructor.

## **Course Goals / Objectives:**

- Understand the physical and mathematical classification of partial differential equations and their roles in aerodynamics
- Learn numerical approximations of derivatives which appear in partial differential equations
- Learn practical applications of the approximate derivatives to the solution of governing equations in aerodynamic problems

# **Course Topics:**

- Philosophy of CFD and Navier-Stokes eqs.
- Classification of PDE
- Finite difference method
- Marching methods
- Nozzle flow with explicit finite difference scheme
- Nozzle flow in conservation form (with and without shock)
- Relaxation methods, ADI, pressure-correction method
- Mesh generation, visualization

# **Designation:**

Elective