Numerical Simulations in BME

BIOMEDE 2700

2.00

Course Coordinator:

Course Length:

14 weeks (autumn or spring)

Representative Textbooks and Other Course Materials:

Title	Author	Year
Numerical Methods in Biomedical Engineering, Academic Press	Dunn, S.M., Constantinides, A., Moghe, P.V.	2006

Course Description:

Focuses on the application of computer-based numerical and graphical display skills for solving problems relevant to biomedical engineering.

Prerequisites and Co-requisites:

Prereq: 2000, and enrollment in BiomedE major, or permission of instructor

Concur: Math 2174

Designation:

Required

Course Goals / Objectives:

- Students will be confident with the implementation of de-novo code and numerical methods to solve BME problems.
- Students will identify their own preconceived limitations on coding and learn how to tackle them.
- Students will understand the utility of coding as a necessary and important skill for problem solving.
- Students will recognize that real-world BME problems are open-ended and complex.
- Students will be able to develop and execute MATLAB programs to graph and visualize biologically relevant data (ABET 2).
- Students will be able to develop and execute MATLAB programs to find numerical solutions for sets of linear and non-linear algebraic equations describing biological phenomena.
- Students will be able to develop and execute MATLAB programs to find numerical solutions for differential equations describing biological phenomena (ABET 1, B)
- Students will be able to perform parameter estimation using MATLAB to approximate equations describing biological phenomena (ABET 1, B)

ABET-EAC Criterion 3 Outcomes:

Outcome	Contribution	Description
1	Some contribution (1-2 hours)	an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2	Some contribution (1-2 hours)	an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

Course Topics:

- Fundamentals: Modeling and Simulation, Extensive Properties, Intensive Properties: Accounting and Conservation, Equations, Review of MATLAB Environment (calculator, scripts/functions, graphics), Vectors (vector manipulation, force representation, bio
- Graphics and Visualization: Point Plots of Experimental Data, Line Plots of ECG Data, Curve Fits of Stress Relaxation Data, Image Processing (digital image fundamentals, histograms)
- Algebraic Balance Equations: Systems of Linear and Non-linear Equations (direct methods, iterative methods)
- Differential Balance Equations: Differential Equations (Hodgkin Huxley equation, cell differentiation, constitutive equations of viscoelastic tissues)
- Numerical Data Analysis: Numerical Integration & Differentiation, Interpolation & Extrapolation, Least Squares Regression, Parameter Estimation (pharmacokinetic model fitting)